
1CASCCASC

A Source-to-Source
Transformation Framework for

Architecture-Dependent
Performance Optimization

Daniel Quinlan
Markus Schordan

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

2CASCCASC

ROSE Talk Outline
l Goal: Simplify Scientific Software Development

— Use High-level Abstractions in Libraries
— High-Level Abstractions hide complexity
— Optimize the Use of High-Level Abstractions in

applications at Compile-Time
l Treat Libraries as Domain-Specific Languages

— e.g. MPI source-to-source compiler
— Source-to-source compiler for generating code for a

machine specific API (e.g. BG/L low level APIs)
l ROSE: Source-to-source Compiler Framework

— Automated Recognition of high-level abstractions
— Specification of Transformations
— Language Independent (currently C and C++)

l Simple Example Problem
l Results
l Conclusions

3CASCCASC

Telescoping Languages

Library 1 ---> Telescoping Language: T1
Library 2 ---> Telescoping Language: T2

Library 3 uses library 2: -----> T2:T3

Base Language

T1

T2

T3

Telescoping Languages are defined by
grammars that are an extension of the
base language grammar

The extension of a base level grammar is
the addition of library abstractions as
terminals in the telescoping language
grammar

User-defined types become part of the
type system within the telescoping
language. This step can be automated.

Language Extensions that match a library

4CASCCASC

Overview of ROSE Approach

C++ Front-End

Recognition

AST Rewrite
System

Transformation

AST Traversal

C++ Code
Generator

Optimized
C++/Lib AST

C++/Lib AST

C++ AST

C++/Lib AST

Rewritten
C++/Lib AST

Data

Uses

Vendor C++
Compiler

Optimized
C++ Source

Optimized
Executable

Unoptimized
C++ Source

Library header files are used to
build source code representing
preprocessor’s Recognition
Mechanism

ROSE Extensible
Annotation Mechanism

ROSE
Mechanisms

5CASCCASC

Relationship to BG/L
180/360 the Irresistible Spin Factor of TWO

l Starting the Two Processor per node fist fight
—L1 Cache is has no coherency
—Special API is defined for manual sweeping L1

cache to L3
— It might not be fun to write or debug code specific

to two processor use of BG/L nodes
l Management can’t restrain from multiplication by 2
l It might be possible to automate the generation of code

to use the two processor API.
—Need more hardware information
—Need examples of what code might look like
—Need to understand what additional info is required

6CASCCASC

ROSE Features

int main() {
 int a[10];

 for(int i=0;i<10;i++)
 a[i]=i*i;
 return 0;
}

•ROSE AST Features:
•AST Query mechanisms
•AST Rewrite mechanisms
•Semantic actions associated with
grammar rules
•Abstract C++ grammar is predefined
•Higher level grammars automatically
generated from library source
•Source code generation

7CASCCASC

AST with High-Level Grammars

int main() {
 Range I(1,98,1),J(1,98,1);
 doubleArray A(100,100);
 doubleArray B(100,100);

 A(I,J) = B(I,J)+B(I,J)
 +B(I,J)+B(I,J);
 return 0;
}

8CASCCASC

Example High Level Abstraction:
P++ parallel array class

int n=100;
Index I(1,n-2),J(1,n-2);
floatArray u(n,n);

// update stencil and communicate between processors

u(I,J) = .25*(u(I-1,J) + u(I+1,J) + u(I,J-1) + u(I,J+1));

Parallel communication
occurs at the =

•Developed in 1990-91, published 1992
•Stencil operations on structured grids are
naturally expressed in terms of array operations
•Details of parallel implementation can be
hidden from the user by the parallel array class

Like F90
Arrays

Like F90
Index Triplet

9CASCCASC

Index I (1,n,1);
doubleArray Solution(n+1), old_Solution(n+1);
doubleArray RHS(n+1);
old_Solution(I) =

((h*h)*RHS(I) + Solution(I+1) + Solution(I-1)) / 0.5;

P++ Code

Index I (1,n,1);
doubleArray RHS(n+1);
doubleArray Solution(n+1);
double* restrict RHS_data = RHS .getDataPointer();
double* restrict Solution_data = Solution.getDataPointer();

int I_index = 0;
int I_base = I.getBase();
int I_bound = I.getBound();

for (I_index = I_base; I_index < I_bound; I_index++)
old_Solution_data[I_index] = ((h*h)*RHS_data[I_index] +

Solution_data[I_index+1] +
Solution_data[I_index-1]) / 0.5;

Automated ROSE Transformation

ROSE Transformation Example
High-Level abstractions mapped to low-level implementation

10CASCCASC

Example Problem

for (int k = 0; k<100; k++)
 {
 temp(ix1,iy1) = old_A(ix1,iy1) -
 2.*dt*((A(ix1+1,iy1)-A(ix1-1,iy1))/(2*dx)+
 (A(ix1,iy1+1)-A(ix1,iy1-1))/(2*dy)-
 (4+2*t+x(ix1,iy1)+y(ix1,iy1)));
 old_A = A;
 A(ix1,iy1)= temp(ix1,iy1);
 A(all,jL)=(1+(t+dt))*(2+x(all,jL)+y(all,jL));
 A(all,jU)=(1+(t+dt))*(2+x(all,jU)+y(all,jU));
 A(iL,iy1)=(1+(t+dt))*(2+x(iL,iy1)+y(iL,iy1));
 A(iU,iy1)=(1+(t+dt))*(2+x(iU,iy1)+y(iU,iy1));
 A.updateGhostBoundaries();
 t +=dt;
 }

Dominate Computation

Boundary Computation

ut + ux + uy = f

11CASCCASC

Relative Performance Improvement
(Using Preprocessor Build with ROSE)

Number of Processors

Scaling of Array Statement Abstraction
(2nd Order Linear Advection Test Problem)

E
xe

cu
tio

n
T

im
e Slope representing ideal scaling

12CASCCASC

Automated Cache-Transformations

Speedup of Two Transformations for Cache Optimization

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6

Time Iterations

S
p

ee
d

u
p

Temporal Tiling

Spatial Tiling

13CASCCASC

Conclusions

l High Level Abstractions Simplify Applications

l Semantics of User-Defined Abstractions can used

l Performance is at least as good as lower level C/F77/HPF

l Many Cache-based optimizations provide better performance than
vendor compilers

l Should simplify (automate) use of both processors on BG/L nodes

l Future Work
— Use of better program analysis (RICE)
— Leverage General Compiler Optimizations (Broadway)
— More Cache Based Optimizations
— Parallel Communication Optimizations

14CASCCASC

Unparsed Example
Takes applications apart and puts them back together

#include "A++.h"
#include "../include/ROSE_TRANSFORMATION_SOURCE.h"
#include <iostream.h>

int main() {

 int x = 4;

 //these comments are difficult
 for (int i = 0; i < 10; i++) {
 while (x) {
 x = x + 1;

 if (false) { x++; x = 7+x; }
 else {
 x = x - 1;
 x--;
 }

 // comments!
 x++;
 x += 1;
 }
 }
 return 0;
}

#include "A++.h"
#include "../include/ROSE_TRANSFORMATION_SOURCE.h"
#include <iostream.h>

int main(){

 int x=4;

 //these comments are difficult
 for (int i=0; i < 10; i++){
 while(x){
 x = x + 1;

 if (FALSE){ x++; x = 7 + x; }
 else {
 x = x - 1;
 x--;
 }

 // comments!
 x++;
 x += 1;
 }
 }
 return 0;
}

Original Input C++ Source code Unparsed Output C++ Source code

